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Introduction

According to the World Health Organization (WHO), viral 
diseases continue to emerge and represent a serious issue to public 
health. An epidemic of cases with unexplained low respiratory 
infections was first reported to the WHO Country Office in China, 
on December 31, 2019. The new virus was called SARS-CoV-2 and 
the disease cause was a “COVID-19” an acronym of “coronavirus 
disease 2019” [1]. Many of these patients deteriorated rapidly and 
required intubation and mechanical ventilation. Mortality rates are 
assumed to be around 3.7%. There is currently no effective treatment 
[2,3]. The therapeutic strategies to deal with the infection are only 
supportive. Prevention, aimed at reducing transmission rates within 
the community is our best weapon.

COVID-19 has characteristics of two known syndromes [4,5]:

• Macrophage activation syndrome [6]: a life-threatening 
complication characterized by hypercytokinemia (cytokine storm) 
with multi-organ failure. It is characterized by an uncontrolled 
activation and proliferation of T lymphocytes and macrophages, 
producing extensive tissue damage as endothelial lesions that lead to 
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the production of microthrombi. Laboratory abnormalities include 
a decrease in white blood cells, platelet and hemoglobin. There is 
a production of a high level of transaminase, a marked increase in 
ferritin, and evidence for intravascular coagulation activation. 
The protagonist of this storm is mainly interleukin 6 (IL-6) which 
promotes the differentiation of B lymphocytes. The cytokine storm 
also stimulates the production of acute-phase proteins and further 
plays a role in thermoregulation, bone maintenance and the function 
of the central nervous system. During inflammatory diseases, 
infections, autoimmune disorders, cardiovascular diseases and some 
types of cancer, there is an increase in IL-6.

• Antiphospholipid syndrome [7]: it is an autoimmune system 
disorder that manifests clinically as recurrent venous or arterial 
thrombosis. This also alters the homeostatic regulation of blood 
coagulation. The D-dimer is elevated in most patients with pneumonia 
and other indicators of coagulation are abnormal. Thrombocytopenia 
is also observed, which seems to be associated with a poorer 
prognosis. Analytically, the presence of high levels of ferritin in the 
blood is striking. They appear to respond to an acute inflammatory 
process. Liver enzymes also tend to be elevated. The Fe2+ released into 
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the blood, in the presence of hydrogen peroxide produces hydroxyl 
radicals (Fenton reaction). This is extremely toxic, causing oxidative 
damage, mainly pulmonary, but also systemic. The lung tissue damage 
stimulates the monocyte-macrophage system which contributes 
significantly to the inflammatory process. Taking into account all the 
ozone therapeutical properties, which will be explained below, it can 
be proposed as an adjunct therapy for patients with COVID-19.

Ozone Therapy and its Mechanism of Action

Ozone (O3) is an allotropic form of the element oxygen, containing 
one more atom than atmospheric oxygen. It is particularly unstable and 
decomposes spontaneously into diatomic oxygen, which, in practice, 
makes it very difficult to transport and store. Ozone therapy has been 
used for therapeutic purposes since the beginning of the last century 
and its use is increasingly demanded nowadays. It is characterized by 
the simplicity of its application, its great effectiveness and with good 
tolerance. International reports of adverse reactions to the application 
of ozone therapy place it among the lowest incidences with 0.0007% 
[8,9]. Ozone, at therapeutic doses, is capable of producing a small, 
transitory and controlled oxidative stress that stimulates a group of 
depressed biological functions without causing any adverse effect. 
This ozone’s preconditioning effect is capable of rebalancing the 
upset redox state in the organism [10]. Biochemically, when blood 
is exposed to ozone for several minutes, it reacts immediately with 
different molecules present in biological fluids, namely antioxidants, 
proteins, carbohydrates and, preferentially, polyunsaturated fatty 
acids (Criegee reaction), leading to the formation of alpha-hydroxy-
hydroperoxides, hydrogen peroxide, ozonides and aldehydes such as 
4-hydroxynonenal. These are important signaling molecules, with 
crucial roles modulating inflammation, cell proliferation, cell growth 
and cell death [11].

These alkenals can activate a nuclear transcriptional factor, called 
nuclear factor erythroid 2-related factor 2 (Nrf2) present in the cell 
cytoplasm bound to Keap-1 protein. Such a protein has -NH2 and, 
mainly, -SH groups (Cys273 and Cys288) which, by binding alkenals 
[for example 4-hydroxynonenal (4-HNE)] at picomolar levels, causes 
a conformational change favoring the dissociation of Nrf2. This is 
then imported into the nucleus where, after forming a heterodimer 
with Maf (musculoaponeurotic fibrosarcoma) protein, interacts with 
the Antioxidant Response Element (ARE) on DNA. Consequently, 
the synthesis of several antioxidative enzymes (superoxide dismutase, 
catalase, glutathione reductase, glutathione S-transferases, NADPH-
quinone oxidoreductase, heat shock protein 70, phase II enzymes 
and Heme-oxygenase-1) are upregulated in various organs [12]. Also, 
reduces iron overload, and subsequent oxidative stress that is induced 
by elevated ferritin [13]. The increase of antioxidant capacity is the 
crucial step to counteract the chronic inflammation typical of diseases 
aggravated by chronic oxidative stress. An improvement of the 
antioxidant response has been reported in patients with asthma and 
Chronic Obstructive Pulmonary Disease (COPD), as emphysema, 
treated with ozone therapy [14-16]. Specifically, improvements were 
seen in IgE levels, inflammatory response, respiratory tests and 

clinical status. Also, in patients with rheumatoid arthritis, ozone has 
exerted beneficial effects [17,18].

This ozone efficacy not only may be explained through its actions 
on cytokine control (diminished IL-1, IL-6 and tumor necrosis factor 
α-TNFα) but also can reestablish cellular redox balance. It is known 
that reactive oxygen species can function as a second messenger to 
activate the nuclear transcription factor NF-κB, which orchestrates 
the expression of a spectrum of genes involved in the inflammatory 
response. Nrf2 is able to modulate inflammation through multiple 
mechanisms, such as the regulation of redox homeostasis and the 
suppression of pro-inflammatory genes, either directly or through the 
interaction with NF-κB [19]. Inflammation increases local and systemic 
Reactive Oxygen Species (ROS) level while ROS enhance inflammation. 
The Nrf2-mediated ROS-homeostatic control can break this vicious 
cycle. Nrf2 reduces inflammation by preventing the recruitment of 
RNA polymerase II to start gene transcription of pro-inflammatory 
cytokines IL-6 and IL-1β [20]. The capability of Nrf2 to maintain redox 
homeostasis would prevent DNA damage, preserve proteostasis, and 
improve mitochondrial function while suppressing acute and chronic 
inflammation [20]. The antioxidant and anti-inflammatory effects 
of ozone involve activation of Nrf2, which is thus considered as a key 
factor for the efficacy of ozone treatments. A previous study reported 
that ozone preconditioning significantly reduced NF-κB expression 
and inhibited inflammatory responses in liver ischemia/reperfusion 
injury [21]. Ozone can achieve an equilibrium between Nrf2 and NF-
κB, modulating the expression of pro-inflammatory cytokines with an 
important effect in cytoprotection (Figure 1) [20].

Besides, Nrf2-activator may attenuate the Toll-Like Receptor 
(TLR) mediated aberrant inflammation by activation of intrinsic 
cytoprotective proteins and suppression of pro-inflammatory 
mediators. Hence, these two major signaling pathways may interact 
differentially and their cross-talk can be manipulated to regulate 
inflammation [22]. TLR activation is critical in the initiation of 
an inflammatory response against pathogens by triggering the 
production of inflammatory cytokines, enhancing adaptive immunity 
[23]. Simultaneously, a negative feedback mechanism also exists that 
could prevent the over-activation of TLR signaling that may otherwise 
result in chronic inflammation or autoimmunity. Nrf2 activation 
interferes with the expression of pro-inflammatory proteins and 
suppresses inflammation. The interaction of TLR and Nrf2 helps 
in the regulation of the inflammation process. The linkage between 
TLR signaling and Nrf2-Keap1 pathway may serve as a bridge 
between immune regulation and oxidative stress responses through 
the regulation of inflammation [22]. It has been demonstrated that 
ozone preconditioning improved renal inflammation and damage by 
blocking the activation of TLR4-NF-κB pathway in renal ischemia/
reperfusion injury. Also, ozone significantly reduced the mRNA level 
of TNF-α, IL-1β, IL-6, ICAM-1 (Intercellular Adhesion Molecule 
1) and MCP-1 (monocyte chemoattractant protein 1) [24]. On the 
other hand, medical ozone, in vitro, has proven to be effective against 
viruses, bacteria, fungi and spores, destroying cells membrane and 
viruses envelop [25].
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Ozone Therapy and its Positive Effects in the Treatment 
of Patients with COVID-19

Among the therapeutic effects of ozone therapy that favors the 
positive evolution of patients with COVID-19 are:

- Ozone improves oxygen metabolism increasing cellular 
oxygenation. Improving the hexose-monophosphate shunt, due to the 
activation of 2,3-DPG which, by binding to the β–chain of hemoglobin 
(Hb), causes a shift to the right of the Hb dissociation curve. This 
enhances the release of oxygen in the hypoxic tissues. There is also an 
improvement of the glycolytic pathway on erythrocytes significantly 
increasing their ATP content [11,13], recovering the elasticity of the 
red cell membrane thus improving blood rheology and capillarity [26]. 
There is a significant improvement in blood flow and oxygenation of 
ischemic tissues due to ozone treatment [27-30]. This is due to Nitric 

Oxide (NO), S-nitrosothiols cooperating with Carbon Monoxide 
(CO) and released prostacyclin [31,32]. Different preclinical and 
clinical studies have demonstrated the effect of ozone in modulating 
the NO levels and its importance in the protection of the vascular 
endothelium cells [32-34].

- Ozone is capable of inducing the release and modulation of 
interferons and related cytokines. Also, stimulates antioxidant defense 
systems, counteracting the state of hyperinflammation, cytokine 
storm and oxidative stress, suffered by patients with COVID-19. This 
is achieved through the increase in Nrf2 factors and restoring cellular 
redox balance [35,36]. There is also the activation of heme oxygenase-1 
(HO-1) by increasing the release of CO and bilirubin. This contributes 
to reducing inflammation [37]. Several preclinical and clinical studies 
report a decrease in proinflammatory cytokines as IL-1, IL-6, TNFα, as 
well as ICAM-1, MCP-1, among others [24,38-45]. Ozone was able to 

 
Figure 1: Ozone and its relation with Nrf2 and NF-κB.

Ozone, at therapeutic doses, is capable of producing a small, transitory and controlled oxidative stress. The nuclear transcription factor Nrf2 is usually present within the cytosol as a complex 
with Keap-1 protein. The 4-HNE (ozone active metabolite) binds to Cys 151 of Keap1 and suppresses the constitutive inhibition of Nrf2, which then translocates into the nucleus. After binding 
to Maf, Nrf2 binds to ARE and switches on the synthesis of highly cytoprotective enzymes (SOD, catalase, GSH, heme-oxygenase-1, HSP, etc) maintaining a redox balance. NF-κB is also a redox-
regulated transcription factor, involved in inflammation, immune function, cellular growth and apoptosis. In resting, it exists in an inactive form complexed with the inhibitor IκB. In the presence 
of oxidative stress, H2O2 (ozone active metabolite) activates a tyrosine kinase that phosphorylates IκB and causes its detachment from the inactive complex. The heterodimer moves promptly from 
the cytosol into the nucleus, where it regulates gene expression forming new proteins such as cytokines (IL-1, IL-2, IL-6, IL-10, TNF-α), COX-2, iNOS, adhesion molecules (ICAM), tissue factor, 
immunoregulatory molecules. At the same time, these two pathways inhibit each other at their transcription level via protein-protein interactions or through secondary messenger effects [19]. Nrf2 
opposes the transcriptional upregulation of proinflammatory cytokine genes. Nrf2 binds to the proximity of inflammatory cytokine genes, including IL-6 and IL-1β, and inhibits their transcription. 
Nrf2 pathway also inhibits NF-κB mediated transcription by preventing the degradation of IκB-α. At the same time, Nrf2 upregulates the expression of genes coding antioxidant proteins. Similarly, 
NF-κB mediated transcription reduces the Nrf2 activation by reducing the ARE gene transcription, among other factors. Therefore, it can be considered that ozone is involved in the balance between 
these two transcription factors.

Nrf2, nuclear factor erythroid 2-related factor 2;Keap1, Kelch-like erythroid cell-derived protein; Maf, musculoaponeuroticfibrosarcoma; ARE, antioxidant response element; HO-1, heme 
oxygenase-1; 4-HNE, 4-Hydroxynonenal; HSP, Heat shock protein; SOD, superoxide dismutase; GSH, reduced glutathione; H2O2, hydrogen peroxide; TNF, tumor necrosis factor; COX-2, 
cyclooxygenase-2; ICAM, intercellular adhesion molecule; iNOS, inducible nitric oxide synthase.
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modulate the phagocytic cells in peripheral blood and the mechanisms 
on how messengers can activate immunological response leading to 
the therapeutic biological effects [46,47]. This is a very positive effect 
on COVID-19 infection. The inflammatory response is a hallmark of 
severe SARS-CoV-2 infection, cytokine storm can lead to the death of 
these patients. The protective effect of ozone therapy was achieved by 
its anti-inflammatory property through the modulation of nucleotide-
binding oligomerization domain-like receptor containing pyrin 
domain 3 (NLRP3) inflammasome, enhancing the antioxidant activity 
of Nrf2 and inhibiting apoptosis [48,49]. The NLRP3 inflammasome 
is a critical component of the innate immune system that mediates 
caspase-1 activation and the secretion of proinflammatory cytokines 
IL-1β/IL-18 in response to microbial infection and cellular damage. 
On the other hand, activation of Toll-Like Receptor (for example 
TLR4) by SARS-CoV-2 causes a biochemical cascade that begins 
with the formation of pro-IL-1 cleaved by caspase-1 and followed 
by activation of the inflammasome. IL-1 is secreted outside the 
macrophage, mediating lung inflammation, fever and fibrosis, and 
provoking severe respiratory problems [50]. It has been demonstrated 
that ozone preconditioning protected the rat kidney from reperfusion 
injury via modulation of the TLR4-NF-κB pathway [24].

- COVID-19 patients suffer from microthrombi due to increased 
viscosity and erythrocyte aggregation, among other factors. Ozone has 
an antiplatelet effect, increases some prostacyclins (like PGI2) leading 
to vasodilatation, as well as modulates antithrombin III [31,51]. All 
these effects, in conjunction with better blood circulation, can help to 
decrease the hypercoagulation phenomena present in these patients.

- Ozone can block the virus’s ability to replicate by balancing the 
cellular redox state, through the control of Nrf2 [52,53]. SARS-CoV-2 
cell entry depends on Angiotensin-Converting Enzyme 2 (ACE2) and 
Transmembrane protease, serine 2 (TMPRSS2). SARS spike protein S 
will attach to ACE2. Following attachment to ACE2, viral entry requires 
S protein priming, which is performed by TMPRSS2 cleaving S protein. 
TMPRSS2 activity is essential for viral spread and pathogenesis in the 
infected host, and TMPRSS2 inhibitors have been investigated as a 
potential therapeutic target for SARS-CoV-2. Nrf2 activators have 
an important role in reducing viral pathogenesis via inhibiting virus 
entry through inhibit TRMPSS2 [54,55]. Nrf2 activators may offer 
multiple ways to regain control of important pathways to increase 
resistance and slow viral replication. Application of an NRF2 activating 
agent, ACE2 mRNA was down-regulated 3.5-fold and TMPRSS2 was 
down-regulated 2.8-fold in human liver-derived HepG2 cells [56]. 
Exacerbated lung injury in Nrf2−/− mice was associated with increased 
pulmonary expression of inflammatory cytokines (TNF-α, IL-1β, IL-6) 
and with decreased pulmonary antioxidant and detoxifying enzymes 
relative to Nrf2+/+ mice [57]. Furthermore, pretreatment with the 
Nrf2-ARE inducer sulforaphane significantly attenuated Respiratory 
Syncytial Virus (RSV)-induced bronchopulmonary inflammation, 
epithelial injury and pulmonary viral expression in Nrf2+/+ mice 
[58]. Results from the study confirmed an association of oxidative 
stress in RSV pathogenesis and provide compelling evidence for an 
important regulatory role of Nrf2-ARE as a host defense mechanism 
against RSV disease. Another study found an inverse relationship 
between the levels of Nrf2 expression and influenza A viral entry 

and replication within nasal epithelial cells [59]. In response to 
experimentally applied mechanical ventilation, greater levels of lung 
alveolar and vascular permeability and inflammatory responses were 
found in Nrf2−/− compared to Nrf2+/+ mice [60]. In mice, Nrf2 
deficiency caused augmented ovalbumin-driven airway inflammation 
and hyperresponsiveness. In this study, the enhanced allergic response 
in Nrf2−/− mice was associated with more pronounced lung mucus 
cell hyperplasia, eosinophilic infiltration, increased Th2 cytokines 
IL-4 and IL-13 and suppressed multiple antioxidants relative to 
Nrf2+/+ mice [61]. In an experimental sepsis model, Nrf2 deficiency 
increased the inflammation and mortality of mice against bacterial 
endotoxin (LPS)- and cecal ligation and puncture-induced septic 
shock [62]. This indicates that Nrf2 is a novel modifier of sepsis that 
determines survival by mounting an appropriate innate immune 
response. Data, therefore, suggest that Nrf2-ARE activators exert 
protective effects on LPS-induced inflammation, and suggested their 
potential therapeutic role for intervening sepsis syndrome. Taking 
into account that ozone stimulates Nrf2 [28,36,37,63], this could be an 
important physiological mechanism to block endogenous COVID-19 
reduplication by preventing contact with receptors of SARS-CoV-19 
through downregulation of ACE2 and TMPRSS2, inactivating the 
ability of the virus to enter cells [55]. The re-equilibration of the cellular 
REDOX state achieved with the ozone therapy is also important in the 
induction of cytokines synthesis in monocytes and lymphocytes and in 
the release of HO-1 and heat shock proteins which are potent activators 
of the immune system [12,64].

Conclusion

In summary, the positive aspect of ozone therapy is the ability to 
activate several defense mechanisms that cooperate to regain a normal 
redox system and a modulation of the NFκB/Nrf2 pathway. Today, 
ozone therapy represents the most practical approach for integrating 
standard therapies to achieve homeostasis. Therefore, due to the ozone 
therapeutical effects, it can be proposed as an adjunct therapy in SARS-
CoV-2. Three randomized control trials (NCT04359303, NCT04370223 
and NCT04444531) are pending classification and approval to start 
in Spain, one in Iran (IRCT20190618043923N4) and two more 
(NCT04366089 and NCT04388514) started in Italy one month ago.

Highlights

Ozone Therapy can be used for the treatment of COVID-19.

Ozone can achieve an equilibrium between Nrf2 and NF-κB, 
modulating oxidative stress and pro-inflammatory cytokines.

Ozone counteracts hyperinflammation, cytokine storm and 
oxidative stress.

Ozone improves oxygen metabolism, blood flow and oxygenation 
of ischemic tissues.
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